Sá-Caputo DC, Costa-Cavalcanti R, Carvalho-Lima RP, Arnóbio A, Bernardo RM, Ronikeile-Costa P, Kutter C, Giehl PM, Asad NR, Paiva DN, Pereira HV, Unger M, Marin PJ, Bernardo-Filho M. Systematic review of whole body vibration exercises in the treatment of cerebral palsy: Brief report. Dev Neurorehabil. 2016 Oct;19(5):327-33. doi: 10.3109/17518423.2014.994713. Epub 2015 Mar 31. Review. PubMed PMID: 25826535.
Whole body vibration (WBV) is increasingly being used to improve balance and motor function and reduce the secondary complications associated with cerebral palsy (CP). The purpose of this study was to systematically appraise published research regarding the effects of static and/or dynamic exercise performed on a vibrating platform on gait, strength, spasticity and bone mineral density (BMD) within this population.
Systematic searches of six electronic databases identified five studies that met our inclusion criteria (2 at Level II and 3 at Level III-2). Studies were analysed to determine: (a) participant characteristics; (b) optimal exercise and WBV treatment protocol; (c) effect on gait, strength, spasticity and BMD; and (d) the outcome measures used to evaluate effect. As data was not homogenous a meta-analysis was not possible.
RESULTS: Several design limitations were identified and intervention protocols are poorly described. The effects on strength, gait, spasticity and BMD in persons with CP remain inconclusive with weak evidence that WBV may improve selected muscle strength and gait parameters and that prolonged exposure may improve BMD; there is currently no evidence that WBV can reduce spasticity.
CONCLUSIONS:The evidence for exercise performed on a vibrating platform on mobility, strength, spasticity and BMD in CP remains scant and further larger scale investigations with controlled parameters to better understand the effects of WBV exercises in this population is recommended.
Saquetto, M., Carvalho, V., Silva, C., Conceição, C., & Gomes-Neto, M. (2015). The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. Journal of Musculoskeletal & Neuronal Interactions, 15(2), 137–144.
Objective:
We performed a meta-analysis to evaluate the effects of whole-body vibration on physiologic and functional measurements in children with cerebral palsy.
Design and methods:
We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, Scielo, CINAHL (from the earliest date available to November 2014) for randomized controlled trials, that aimed to investigate the effects of whole-body vibration versus exercise and/or versus control on physiologic and functional measurements in children with cerebral palsy. Two reviewers independently selected the studies. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated.
Results:
Six studies with 176 patients comparing whole-body vibration to exercise and/or control were included. Whole-body vibration resulted in improvement in: gait speed WMDs (0.13 95% CI:0.05 to 0.20); gross motor function dimension E WMDs (2.97 95% CI:0.07 to 5.86) and femur bone density (1.32 95% CI:0.28 to 2.36). The meta-analysis also showed a nonsignificant difference in muscle strength and gross motor function dimension D for participants in the whole-body vibration compared with control group. No serious adverse events were reported.
Conclusions:
Whole-body vibration may improve gait speed and standing function in children with cerebral palsy and could be considered for inclusion in rehabilitation programs.